

Relevance of Multi-dimensional Spectroscopy for the Study of Sun-light-driven Processes

Tomáš Mančal

Faculty of Mathematics and Physics, Charles University Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic; mancal@karlov.mff.cuni.cz

It seems obvious that time-resolved ultrafast spectroscopic experiments study photosynthesizing (light-harvesting) molecular systems under conditions different from those found in their operational environment. In particular, in the laboratory, the excitation condition is substantially different from Sun-light illumination, and the individual component systems of light-harvesting systems might not be connected to the charge separating part of the apparatus; hence the excitation is not drained from the light-capturing antenna. These profound differences provoke questions about the relevance of the experimental insights into the primary processes of photosynthesis obtained by **ultrafast time-resolved spectroscopy**. In this contribution, we review the answers to these important questions by minimalistic models and general theoretical considerations based on non-linear response theory. Time-resolved spectroscopy comes out remarkably well from this questioning. The **difference in the excitation condition turns out to** be an advantage (at least from a theoretical point of view); the difference between the drained and the undrained non-equilibrium states of the photosynthetic systems seems to be small for typical light-harvesting parameters. Besides some conceptual details and a need for care in overinterpreting coherent aspects of the dynamics observed in time-resolved experiments, ultrafast timeresolved spectroscopy, including its multi-dimensional variants, is the right tool to build a big picture of the Sun-light driven processes.

Main Possible Objections against Time-resolved Spectroscopy

lssue	Time-resolved spectroscopy	Operational Conditions	How to Resolve the Problem
Strenght of Illumination	Strong?	Weak	S1
Light driving	Impulsive/ Multiple Pulses	Steady	S2, S3
Illumination type	Coherent	Incoherent	S2
Load/Drain	Yes/No	Yes	S4

Third order spectroscopies observe dynamics induced by second order excitation

Second-order excitation serves as an initial condition for excited state propagation both in non-linear spectroscopy and in the light-harvesting function.

Fig 1: Typical non-colinear scheme of Fourier Transformed 2D (FT2D) Spectroscopy . Delay τ between the two light-matter interactions appears in both situations.

S1

Fig 2: Third order response continues the second order diagrams that set the τ –dependence of the initial condition for the excited state dynamics.

Multi-dimensionality

In the non-linear response, each response interval requires its own equations of motion [2]. Excited state dynamics is not the same for different values of the delay τ .

For systems with non-trivial bath (underdamped vibrations, long bath correlation time, ...), it is not an issue of a simple phase factor.

In principle, the knowledge of τ dependence of the system dynamics is required to construct the correct driven state.

For Sun-light, τ is extremely short.

- 2D Fourier Transformed Spectroscopy observes an average of dynamics corresponding to different "bath" initial conditions (different τ delays)
- The effects are relatively small, and the magnitude of contributions decays quickly with increasing τ [3].

Fig. 3: Populations (left column) and coherence (right column) of a dimer excited by two pulses with $\tau = 0$ (full line) and $\tau = 60$ fs (dashed line). From Ref. [3].

- Weak response to light corresponds to **second-order perturbation theory**
- Validity and reproducibility of non-linear spectra are bound to the observation of the correct non-linear order
- Third-order spectroscopies do not represent a strong illumination regime

Driving by Incoherent Light

Sz

Ideally, we want to know what happens when light-harvesting machinery is "struck by a photon from Sun." This is, however, **not a question compatible with quantum mechanics.** The theory formulated in terms of the **quantum mechanical state of light** weakly driving the excitation in a molecular system [1] finds the excited state to depend on a **second-order response operator** convoluted with the **second-order field correlation function of the light**. For steady illumination (Sunlight), the later quantity does not depend on time.

A steadily driven state with excitation trapping and drain (charge separation) will reach saturation, where **no time-dependence occurs**. In particular, all dynamic coherence is washed away.

Second-order excited state dynamics under arbitrary driving can be **constructed** from the second-order response operator – **second-order Liouville pathways.**

Non-linear optical spectroscopy gives unique access to the second-order response operator (via the third-order response). However, **dynamics occurring in the laboratory is not the dynamics occurring under Sunlight**. The latter can be reconstructed from laboratory measurements. The difference is illustrated in Fig. 3.

$$\hat{\rho}_e(t) = -\frac{1}{\hbar^2} \int_0^t d\tau' \int_0^{\tau'} d\tau \operatorname{tr}_B \{ U_0(t-\tau')\hat{\mu} | g \rangle \hat{w}_{eq} \\ \times \langle g | \hat{\mu} U_0^{\dagger}(t-\tau'+\tau) \} G_E(t-\tau',t-\tau'+\tau) + \text{h.c..} \\ G_E(t-\tau',t-\tau'+\tau) = \langle \hat{E}(t-\tau')\hat{E}(t-\tau'+\tau) \rangle$$

Second order field correlation function.

Effects of Load/Drain

Spectroscopy provides information about the states that can be resonantly excited – it informs us about the **preferred basis** (PB) of the embedded electronic system. Fast trapping and excitation drain can shift this basis. The resulting non-equilibrium steady state (NESS) might not be related to the spectroscopically observed dynamics.

How is trapping changing PB?

Fig. 4: Left (b): Basis rotation with respect to the excitonic basis of a dimer as a function of trapping time and bath reorganization energy. Right (a): Dependence of basis rotation on reorganization energy for several values of trapping time. From Ref. [4].

For the parameter region typical for natural light-harvesting

- Driven NESS is structurally similar to undriven equilibrium [4]

Ref. [4]

S3

Ref. [3]

S4

Effects of load/drain are **negligible for picosecond trapping time** [4]

Summary

- Non-linear spectroscopy contains the complete information necessary to reconstruct dynamics under arbitrary weak light driving, including light with different coherence properties and temporal dependencies.
- Under Sun-light illumination, the system enters a non-equilibrium steady state (NESS), which does not display "dynamics" but exhibits non-zero currents. Photo-induced dynamic coherence does not play a role [4,5]
 For parameters typical for natural light-harvesting (slow excitation trapping), the NESS is structurally similar to the expected equilibrium state.

To describe arbitrary weak-light-driven dynamics (from Ref. [5])

- We need response operator for δ –pulse excitation
- We need the field correlation function of the light
- Coherent or incoherent is not of crucial importance

Literature

[1] T. Mančal and L. Valkunas, New J. Phys. 12 (2010) 65044
[2] T.Mančal and F. Šanda, Chem. Phys. Lett. 530 (2012) 140
[3] J. Olšina and T. Mančal, Chem. Phys. 404 (2012) 103
[4] V. Janković and T. Mančal, J. Chem. Phys. 153 (2020) 244110
[5] T. Mančal, Chem. Phys. 532 (2020) 110663
[6] J. Cao *et al.*, Sci. Adv. 6 (2020) eaaz4888

Light coherence properties enter here.

Fig. 3: Steady driving of oscillatory systems leads to dynamics different from impulsive driving. This property is not limited to quantum systems or quantum driving

Acknowledgments

Czech Science Foundation (GAČR) Grant No. 22-26376S Center for Nano- and Bio-Photonics UNCE/SCI/010, Charles University matfyz

GRANTOVÁ AGENTURA ČESKÉ REPUBLIKY