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We derive the general form of the reduced statistical operator describing the excited state of a
molecular system driven by an arbitrary (classical) light as discussed in T. Mančal and L. Valkunas,
New J. Phys. 12 (2010) 65044.

We consider a general molecular system in interaction
with its environment

H0 = HS +HB +HS−B (1)

and subject to the influence of an external optical field
through the interaction Hamiltonian

HI = −µ̂ · Ê(t). (2)

Here, we assume that we already work in the interac-
tion picture with respect to the light Hamiltonian, and
the operator Ê is therefore time-dependent. We assume
that the interaction between the light and the system is
non-entangling, which is well satisfied by the coherent
light of the laser and by the black body radiation. For
this reason, the combined state of the system (including
the environment) and light can be written in terms of a
product of their respective state vectors

|ψ(t)⟩ = |ϕ(t)⟩|Ξ(t)⟩, (3)

where |ϕ(t)⟩ is the state of the molecular system and its
environment, and |Ξ(t)⟩ is the state of light.

The state |ψ(t)⟩ satisfies the Schrödinger equation

∂

∂t
|ψ(t)⟩ = − i

ℏ

(
H0 − µ̂ · Ê(t)

)
|ψ(t)⟩. (4)

Solving this equation to the first order in Ê we obtain

|ψ(t)⟩ = U0(t)|ψ(0)⟩ −
i

ℏ

t∫
0

dτ U0(t− τ)µ̂ · Ê(τ)|ψ(0)⟩,

(5)
where we assume that the initial condition for the system
state at t = 0 reads as |ψ(0)⟩ = |ψB,eq⟩|g⟩, where |g⟩ is
the electronic ground state of the molecular system and
|ψB,eq⟩ is the equilibrium bath state relative to |g⟩. This
state effectively does not evolve under U0(t).

Now, we will construct the statistical operator Ŵe(t)
corresponding to the excited state manifold of the singly
excited molecular states. We define a projection oper-
ator P̂e =

∑
n |n⟩⟨n|, where the states |n⟩ represent all
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the electronic states of the system that can be reached
by optical excitation from the ground state |g⟩, and all
the states that can be reached by non-radiative processes
from them (excluding the ground state). We have

Ŵe(t) = P̂e⟨Ξ(t)|ψ(t)⟩⟨ψ(t)|Ξ(t)⟩P̂e. (6)

Here, we also average over the state of the light. The
statistical operator Ŵe(t), which describes the system in
the excited state and its environment, reads as

Ŵe(t) = − 1

ℏ2

t∫
0

dτ ′
t∫

0

dτU0(t− τ ′)µ̂|g⟩

×ŵeq⟨g|µ̂U†
0 (t− τ)⟨Ê(t− τ ′)Ê(t− τ)⟩ (7)

The excited state reduced density matrix describing
the electronic excited state dynamics of the system is
obtained by tracing over the bath

ρ̂e(t) = trB{Ŵe(t)}. (8)

Applying the trace over the bath to Eq. (7) we get

ρ̂e(t) = − 1

ℏ2

t∫
0

dτ ′
τ ′∫
0

dτ trB{U0(t− τ ′)µ̂|g⟩ŵeq

×⟨g|µ̂U†
0 (t− τ ′ + τ)}GE(t− τ ′, t− τ ′ + τ) + h.c..

Here, GE(t−τ ′, t−τ ′+τ) is the two-point field correlation
function of quantum optics (up to a normalization)

GE(t− τ ′, t− τ ′ + τ) = ⟨Ê(t− τ ′)Ê(t− τ ′ + τ)⟩.

The operator

R̂(τ ′′, τ) = trB{U0(τ
′′)µ̂|g⟩ŵeq⟨g|µ̂U†

0 (τ
′′ + τ)}, (9)

has matrix elements

Rab(τ
′′, τ) = dgcddg

×
∑
cd

trB{⟨c|U†
0 (τ

′′ + τ)|b⟩⟨a|U0(τ
′′)|d⟩ŵeq}. (10)

These elements can be recognized as consisting of the first
two intervals of the third-order response functions that
form the signal measured in the third-order non-linear
spectroscopies. If the non-linear response interval times
are denoted by t1, t2 and t3 (the so-called coherence time,
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waiting time and the second coherence time), than the

R̂ operator can be obtained from the (ideal) measured
response at t1 = τ and t2 = τ ′′ and t3 = 0. If a 2D
electronic spectrum S(ω3, t2, t1) represented in the time
domain is measured (with ideal ultrashort pulses), the
second order response is related to its integral over the
detection frequency ω3, i.e.

R̂(t2, t1) ≈
∞∫

−∞

dω3 S(ω3, t2, t1). (11)

Theoretically, a system’s driven second-order excited
state can be calculated from the same ingredients as the
time-resolved spectra. How to do this directly from the
experimental spectrum is a subject of ongoing research.


